The Arctic in the news- Arctic sea-ice melt prediction using melt ponds

Even though I’ve mostly stuck to Antarctica news so far this bit is important for two reasons. One it’s about melt ponds, which is what I look at but on the other side of the world, and two it’s the group that I’m part of at Reading, go CPOM!

Melt ponds on Arctic sea ice, copyright NASA Goddard Space Flight Center

Melt ponds on Arctic sea ice, copyright NASA Goddard Space Flight Center

What’s happened?

The CPOM group at Reading have just released a prediction for the 2014 Arctic sea ice minimum. They did this by using the fact that there is a correlation between the fraction of sea ice covered by melt ponds  (pools of melted ice) in spring and the minimum amount of ice that will then be present at the end of the summer.

The reason for this is to do with the ponds being darker than the surrounding ice, as you can see in the image above. This means that they absorb more energy from the sun, which can lead to warming and further melting.

What does this mean?

These short term predictions are mostly important for predicting shipping routes but the more we know about modelling processes such as the formation of these ponds the better models will be for predicting future extents- one of the greatest uncertainties in predicting future global temperature changes is sea ice level fluctuations.

What’s next?

The prediction has been entered into the Arctic Research Consortium of the United States (ARCUS) Sea Ice Prediction Network–  an annual comparison between different scientists’ predictions, but we’ll have to wait until September to see if Reading’s efforts will do well in the rankings!

An inforgraphic produced by University of Reading to go with today's news.

An infographic produced by University of Reading to go with today’s news.

 

 

 

Penguins are going climbing to adapt to climate change!

An emperor penguin (image Photo Volcania)

Until recently it was thought that all emperor penguins bread on fast ice, that’s sea ice attached to the land; much easier to navigate than the cliffs of ice shelves (image Photo Volcania).

It has been well publicised recently that despite sea ice in the Arctic decreasing, sea ice in the Antarctic has been on the increase. Emperor penguins breed on sea ice, so surely this would be a good thing for the penguins?

Unfortunately, this isn’t the case- even though there is more ice forming it’s forming too late for the penguins’ breeding season. The climate of Antarctica is changing, it has warmed more than 5 times the global average over the last century. It is thought that one of the colonies discovered moved as a result of the late arrival of the sea ice, potentially due to a changing climate.

Penguin colonies can actually be spotted in satellite images such as the one below and it was a combination of this and aerial views from planes that alerted scientist to the fact that these colonies that have moved onto ice shelves.

A satellite image of an emperor penguin colony on an ice shelf (Image BAS/Digital Global).

A satellite image of an emperor penguin colony on an ice shelf (Image BAS/Digital Global). Guano is a term for penguin excrement.

It’s not known quite how the penguins manage to climb up cliffs onto the ice shelves as the colonies haven’t been studied up close but it is thought they might be able to shuffle up between ridges formed by draining water on the ice shelves.

Although it is bad news that the penguins are having to do this it’s a nice positive in their chances of future survival. Polar regions warm faster than other areas so this may not be the end of unusual penguin behaviour if the planet continues to warm.

An emperor penguin huddle. The males are left to look after the eggs while the females go off and hunt, they hiddle together to try and survive the freezing conditions such as during the blizzard shown here (image Australian Antarctic Division).

An emperor penguin huddle. The males are left to look after the eggs while the females go off and hunt, they huddle together to try and survive the freezing conditions such as during the blizzard shown here (image Australian Antarctic Division).

 

References:

The original research article (Fretwell et al.) is http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0085285